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Conformations of closed DNA

Boris Fain* and Joseph Rudnick
Department of Physics, UCLA, Los Angeles, California 90095-1547

~Received 24 March 1999!

We examine the conformations of a model for a short segment of closed DNA. The molecule is represented
as a cylindrically symmetric elastic rod with a constraint corresponding to a specification of the linking
number. We obtain analytic expressions leading to the spatial configuration of a family of solutions represent-
ing distortions that interpolate between the circular form of DNA and a figure-eight form that represents the
onset of interwinding. We are also able to generate knotted loops. We suggest ways to use our approach to
produce other configurations relevant to studies of DNA structure. The stability of the distorted configurations
is assessed, along with the effects of fluctuations on the free energy of the various configurations.
@S1063-651X~99!15711-8#
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I. INTRODUCTION

If a segment of untwisted rod is forced to close smoot
on itself, it will take on a circular shape in order to minimiz
the elastic energy. Thermal fluctuations will exert a sign
cant effect on this configuration only if the circumference
the circle is greater than the temperature-dependent pe
tence length of this segment. When the looped rod is a
forced to undergo a twist, the circular shape may prove to
unstable. The rod will then either distort into a nonplan
nonintersecting form, or it may wind about itself, in an i
terwound, or ‘‘plectonemic,’’ configuration@1–7#.

When torsional and flexing stresses are not too severe@8#,
the DNA molecule can be modeled as such a rod. A sh
enough segment of looped DNA will thus take on shap
determined by the minimization of elastic energy. Plan
shapes, characteristic of ‘‘relaxed’’ DNA have been o
served, as have the plectonemic forms when the molecu
over or underwound. The distortion, or supercoiling, of DN
under the influence of torsional stresses is widely believe
have significant implications with respect to the action of t
molecule in biological settings@9#. That this is so may be
inferred from the existence of enzymes known as top
somerases, which act to facilitate the alteration of the
sional characteristics of DNA configurations@9–12#.

The elastic model of DNA has been the subject of inte
research in the past 30 years. Theoretical appraches to
problem include Lagrangian mechanics@13–17#, b splines
and~numerical! molecular dynamics@18#, and statistical me-
chanics@19#. It has been possible to determine the equil
rium configuration of a closed segment of DNA, as mode
by a distorted rod@14,20,21#. A comprehensive discussion o
the properties of these equilibrium configurations has not
been published.

In this paper we contribute to the knowledge of this co
figuration by describing a method by which one can obt
the shape of a closed section of an elastic rod, along w
various key properties of this system, including its twi
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writhe, linking number, and energy. We will use this forma
ism to generate both unknotted and knotted forms of clo
DNA. We will also outline how our formalism can be ex
ploited to produce other shapes of interest to DNA resea
ers.

The configurations that will be discussed include tho
that arise as a result of the the supercoiling instability fo
closed loop. We will also examine the configurations th
represent the evolution of higher energy deformation o
circular loop. In addition, we will briefly discuss configura
tions that are associated with knotted loops. Such knots
clude, but are not limited to, the trefoil. All the more elab
rate configurations are unstable with respect to fluctuati
about the solutions that extremize the energy of the lo
However, it is possible to envision mechanisms, analog
to those leading to the nucleosome structure@9,22#, that sta-
bilize these configurations and, therefore, cause them to
relevant to biological systems.

As noted above, we will discuss the mechanical stabi
of the configurations to be studied, and will present resu
with regard to the contribution to the free energy of therm
fluctuations about the minimizing shape. These results
be relevant as long as thermal fluctuations do not give ris
a significant alteration of the shape that the rod takes, and
noted above, if the circumference of the rod is not lar
compared to the rod’s persistence length. The precise c
rion for this will be examined later on in this paper.

The most important advance in the work presented her
the algorithm for the analysis of the stability of the config
rations, particularly the one associated with the principal
percoiling instability. On the basis of the stability analysis
is clear that only some of the configurations that one c
generate with the use of the methods described in this p
are, in and of themselves, mechanically stable. However,
existence of devices that support noninterwound superco
configurations in the case of open strands of DNA@9,22#
allow one to speculate as to the possible relevance of th
configurations to DNA in biological settings. Furthermor
one can envision utilizing these methods in conjunction w
other calculational tools to study the mechanical proper
and packing configurations of longer strands of DNA.

The paper is organized as follows. First, the mechan
d

7239 © 1999 The American Physical Society



.
th
gy
ca
h
e
y
ed
hi
th
ity
th
it
e
te

s
rie
las
re

n
-

d
u
le

fo
a

e

ly

e

p
op
ib

a-
of
his
ese
een
on-

of
f

pe

or-

op
r of

to

ns

nd
e

e
the
e.,

es

7240 PRE 60BORIS FAIN AND JOSEPH RUDNICK
model is described and important parameters are defined
especial importance is an identification of the parameters
will be adjusted in order to obtain solutions of the ener
extremum equations. Key quantities, including topologi
invariants, will be defined in terms of those parameters. T
stability of the circular configuration of a closed rod und
torsional stress is then assessed. The principal instabilit
identified, and it is shown how to obtain the family of clos
curves that represent the evolution of this instability. T
family interpolates between the circle and a figure eight,
latter of which lies at the onset of interwinding. The stabil
of the members of this class is then assessed. It is found
they are, indeed, stable against small fluctuations. Then,
shown that the method by which the outcome of the sup
coiling instability is investigated can be utilized to genera
deformed configurations, among which are configuration
which the closed loop is also knotted. Finally, there is a b
discussion of the contributions of fluctuations about the c
sical solution configurations. Details and background are
egated to the Appendixes.

II. ELASTIC MODEL AND EXPRESSIONS OF INTEREST

In a previous work we have outlined some developme
in the elastic model of DNA@23#. The molecule is repre
sented as a slender cylindrical elastic rod. At each points the
rod is characterized by relating the local coordinate frameF
to the frameF0 rigidly embedded in the curve in its relaxe
configuration. The relationship between the stressed and
stressed local frames is specified by Euler ang
u(s),f(s),c(s) needed to rotateF0 into F.

We begin by summarizing some of the results needed
this paper. We denote the elastic constants of bending
torsional stiffness byA andC, respectively. The length of th
rod is denoted byL. The elastic energy is given by

Eel5E
0

L

dsS A

2
~ḟ2 sin2u1 u̇2!1

C

2
~ḟ cosu1ċ !2D .

~2.1!

The ‘‘dot’’ notation for derivatives is used interchangeab
with the explicit derivative with respect to arc lengthd/ds.

The twist is given by

Tw5
1

2pE0

L

ds~ḟ cosu1ċ !. ~2.2!

A relevant result from our previous work is that Lk, th
linking number, can be written as

Lk5I211
1

2pE0

L

~ḟ1ċ !ds. ~2.3!

Where we have used Fuller’s theorem@24# to obtain the
writhe, and White’s theorem@25# for the total link. The
quantityI is an integer that encodes the knotting of the loo
It is equal to the number of signed crossings of the lo
assuming that it has been flattened out as much as poss
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III. CANDIDATES: THE ELASTIC EXTREMA

A. Stability and excitations of the circular loop

As a precursor to the discussion of the possible deform
tions of a closed loop, we review the family of excitations
a closed, circular loop, and the conditions under which t
configuration may become unstable to one or more of th
excitations. A detailed discussion of these issues has b
relegated to Appendixes A and B. The Appendixes also c
tain derivations of key formulas presented below.

The excitation of a circular loop is describable in terms
the deviation of the Euler angleu from the constant value o
p/2 that it has in the case of a circle. If we writeu(s)
5p/21g(s), then small excitations about a circular sha
will be of the form

g~s!} cosS 2pn

L
1d D , ~3.1!

wheren is an integer~possibly 0! andd is an arbitrary phase
factor. The energy of such a sinusoidal excitation is prop
tional to

En5
A

2 S 2p

L D 2H n2212S C

AD 2

Lk 2J . ~3.2!

The requirement that the fluctuations leave the lo
closed and, also, that they not change the linking numbe
the loop rule outn50 andn51 as possibilities. The allowed
deformation with the smallest energy hasn52. Substituting
this value into Eq.~3.2!, we find for the energy cost of this
excitation

E2}
A

2 S 2p

L D 2H 32S C

AD 2

Lk2J . ~3.3!

It is clear that this deformation of the circle can give rise
a lowering of the energy. This state of affairs holds if

Lk.
A

C
A3. ~3.4!

In fact, the condition in Eq.~3.4! is just the requirement for
the supercoiling instability of the closed loop. Deformatio
associated with higher values ofn lower the energy of the
loop when the condition

Lk.
A

C
An221 ~3.5!

holds.
It is clear that the instability with the earliest onset, a

the one that will prove dynamically ‘‘strongest’’ is the on
with threshold as given by Eq.~3.4!.

B. A family of curves

We start by looking for a family of closed solutions to th
Euler-Lagrange equations that represent the evolution of
deformation associated with the supercoiling instability, i.
n52 in Eqs.~3.1! and~3.2! above. This family of curves can
be indexed by the writhe, Wr, of a member, which rang
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PRE 60 7241CONFORMATIONS OF CLOSED DNA
from Wr50 for a simple circle to Wr51 of the other limit-
ing member of the family, a ‘‘figure eight.’’ The actual con
straint imposed on the closed curves that are of relevanc
this discussion is that the link is fixed at a predetermin
value. We shall therefore examine the conditions un
which the family of writhing curves can satisfy the impos
tion of a linking number.

C. Euler-Lagrange minimization

Our goal is to extremize elastic energy and keep the cu
closed. The functional to consider for closed configuratio
of DNA is

H5E
0

L

dEel2Ftẑds. ~3.6!

The first term of Eq.~3.6! is clear—the elastic energy mu
be extremized. The second term enforces the constraint
the curve minimizing the elastic energy also closes up
itself. In general, one expects to introduce Lagrange mu
pliers controlling the extent of the curve in all direction
However, one can concentrate on the net displacemen
only the z direction, because it is always possible to tran
form to a reference frame in which the curve is closed in
XY plane. Written explicitly as a function of Euler angle
Eq. ~3.6! becomes

H5E
0

L

ds
A

2
~ḟ2 sin2u1 u̇2!1

C

2
~ḟ cosu1ċ !22F cosu.

~3.7!

The extrema are found by applying Euler-Lagrange eq
tions to Eq.~3.7!. Denoting the conserved quantities asJf

[]H/]ḟ andJc[]H/]ċ we obtain

ḟ5
Jf2Jc cosu

A sinu
, ~3.8!

ċ5
Jc

C
2ḟ cosu. ~3.9!

The equation foru is a quadrature obtained by integratin
]H/]u5d/ds]H/]u̇ with E0 as the constant of integration
Defining u[cosu we see that the behavior of solutions
governed by a cubic polynomial inu:

u̇25
2~12u2!

A
~E02Fu!2

1

A2
~Jf

2 1Jc
222JfJcu!

[
2F

A
~u2a!~u2b!~u2c!, ~3.10!

where we order the rootsc<u„[cosu(s)…<b<a. Equation
~3.10! requires that cosu(s) oscillates betweenc and b. For
the distortions studied here, there are two complete oc
tions as the the closed curve is traversed once. All the
evant quantities, including the shape of the curve, can
obtained using Eq.~3.10!. For example,
to
d
r

e
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at
n
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in
-
e

-

-
l-
e

f~s!5E
u(s50)

u(s) df

ds

ds

du
du

with

ds

du
5A A

2F

1

A~u2a!~u2b!~u2c!
. ~3.11!

The key to the solution of the equation for the distort
closed loop is the determination of the parametersF, a, b,
andc.

D. Constraints

To complete the analysis we must determine the par
eters generated by the minimization procedure. One ch
of parameters is the set of invariantsJf andJc , the constant
E0, and the Lagrange multiplierF. However, as indicated
above, a better practical choice is the Lagrange multiplieF
and the parametersa, b, andc. To determine the parameter
we impose constraints on the curve. Figure 1 is a good vis
guide to the geometric meaning of the constraints. They
as follows.

~A! The loop closes on itself in thez direction. Because
the curve consists of four segments, in each of which
variableu(s) goes fromb to c, or from c to b, we have

E
0

L/4

u~s!ds50. ~3.12!

~B! The loop goes through one quarter of a turn in ea
segment. This reduces to

E
0

L/4df~s!

ds
ds5

p

2
. ~3.13!

~C! The linking number takes on a predetermined va
for the loop. This requirement leads to the following mat
ematical constraint on the solution to the Euler-Lagran
equations:

E
0

Ldc~s!

ds
ds5Lk. ~3.14!

~D! Finally, the length of the loop takes on a predete
mined value. Mathematically,

E
0

L

ds5L. ~3.15!

FIG. 1. The tangent oscillatesc→b→c→b→c. The curve is
composed of two symmetric parts.
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7242 PRE 60BORIS FAIN AND JOSEPH RUDNICK
The above condition is not as tautological as it seems.
actual parametrization of the curve will be in terms of t
dependence of quantities on the cosine of the Euler a
u(s).

E. Reparametrization

At this point we reparametrize the problem in terms
F,a,b,c instead ofF,E0 ,Jf ,Jc . Parametrizing the problem
by the roots of the polynomial is extremely advantageous
makes the analytic manipulations more transparent; it a
streamlines the computational tasks. The two sets of par
eters are related in the following manner:

E05F~a1b1c!, ~3.16!

Jf5AAF

2
~p16p2!; Jc5AAF

2
~p17p2! ~3.17!

with

p(
2
1)[@~c61!~b61!~a61!#1/2.

The choice of branch (6) is imposed by the family of con
figurations sought. For circular DNA without intrinsic curva
ture,Jf takes a2, andJc correspondingly a1. ~The choice
of a particular branch is a nontrivial procedure.! Let us make
some definitions that render the notation more transpare

Db[~b2c!; Da[~a2c!, ~3.18!

q[ADb

Da
. ~3.19!

Employing Eq.~3.11! we rewrite the constraint equation
Eqs. ~3.12!, ~3.13!, and ~3.15!, in terms of the new param
eters:

aK~q!5DaE~q!, ~3.20!

p/25
1

Da FU~a11!~b11!

~c11!
U1/2

PS Db

212c
,qD

2U~a21!~b21!

~c21!
U1/2

PS Db

12c
,qD G ~3.21!

F5
32A

DaL2
K~q!, ~3.22!

where K, E, and P are complete elliptic integrals of th
first, second, and third kind, respectively. The issue of
constraint on linking number will be left for later discussio

F. Solving for a, b, c, and F

We find that the optimal procedure for the calculation
parameters appropriate to a solution is to utilize Eq.~3.22! to
eliminateF, then Eqs.~3.20! and~3.21! eliminateDa andc.
Because the writhe Wr, is a monotonically increasing fu
tion of Db, we make use of this property to distinguish b
tween the members of a family of curves. Once the const
F,a,b,c are determined, the desired solutions and all
e

le

f

it
o

m-

:

e

f

-
-
ts
e

relevant quantities are computed via elliptic integrals. F
example, the explicit expression foru(s) in the first quarter
of oscillation is@we have inverted Eq.~3.11!#:

cosu5Dbsn2SAFDc

2A
s,ADb

DaD 2c, ~3.23!

f andc are obtained similarly from Eqs.~3.8! and ~3.9!.
Figure 2 displays the family of curves computed in t

manner discussed above. Since the constraint equation
volve elliptic integrals, finding a solution on a computer
virtually instanteneous; analytically and computationally
liptic integrals are equivalent to, say, arcsin.

G. Bounding members: circle and figure eight

Let us check whether the initial member of our family,
circle with Wr50 joins smoothly with the previously known
stable family of twisted circles@26#. The circle corresponds
to Wr50. A circle in theXY plane the curve must haveb0
5c050. Equation~3.21! now states that

1

Aa0

~Aa0112Aa021!51, ~3.24!

which in turn gives

Jc05
2pA

L

1

Aa0

~Aa0111Aa021!5
2pA

L
A3.

~3.25!

Combining Eqs.~2.2! and~3.9! to obtain the twist Tw of the
circle ~3.25! gives

FIG. 2. The family of curves ranges from the circle in theXY
plane to the figure eight in theYZ plane. The perspective is slightl
asymmetric to aid visualization. The ‘‘fins’’ on these, and all oth
pictured curves, trace out the embeddedx and y axes, and thus
depict the twisting of the rod.
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PRE 60 7243CONFORMATIONS OF CLOSED DNA
Tw05
L

2p
Jc05A3

A

C
. ~3.26!

It is also of interest to compute the Tw of the figure eig
which, like the circle, can be performed virtually by inspe
tion. The figure lies in theYZ plane, which forcesf to
behave as follows~refer to Fig. 1 for visualization!:

ḟ85pS d~0!1dS L

2D D . ~3.27!

Combining Eqs.~3.27! and ~3.8! forcesJf85Jc850 which
immediately sets Tw850. The value ofDb8 is easily deter-
mined from the fact thatc8521 ~this can be seen from th
curve itself! necessitatinga51. Then Eq. ~3.21! yields
Db851.6522 . . . .

IV. LINKING NUMBER AND THE PLECTONEMIC
TRANSITION

We have found a family of writhing solutions that are t
extrema of elastic energy. The writhe of the curves cov
the range 0<Wr<1. ~That the figure eight has Wr51 just
before crossing can be seen from the shape of the cu!
However, the physical constraint imposed on the molecul
Lk, the linking number. The explicit expressions for Tw, L
and Wr are easily obtained:

Tw5
2p

ADa
K~q!~p11p2!

A

C
, ~4.1!

Wr5
2p

ADa
F2K~q!~p11p2!1

p1

11c
PS Db

212c
,qD

1
p2

12c
PS Db

12c
,qD G ~4.2!

and, using White’s theorem@25#

Lk5Tw1Wr. ~4.3!

With reference to Fig. 3, we can now describe what h
pens to a deformed loop of DNA as the linking number
increased. The loop remains a circle untilD Lk5A3A/C.
After that there are three possibilities. IfA/C<0.5 then the
writhing family supports a steady increase to the linki
number limit Lk51 of the figure eight and the molecu

FIG. 3. The three types of behavior of Lk for our writhin
family of curves. The ratioA/C controls the plectonemic transition
The quantityC is the torsional modulus, whileA is the bending
modulus.
,

rs

e.
is

-

folds continuously until self-crossing occurs. Further i
crease of Lk presumably results in a plectonemic configu
tion. If 0.5<A/C<1 then one can expect the curve to disto
continuously until the writhe achieves some value interm
diate between zero and one. There is, at this threshold v
of the writhe, a transition, almost certainly to an interwou
form. WhenA/C.1, none of the members of the writhin
family support the necessary linking number, and as soo
D Lk exceeds the supercoiling threshold valueA3A/C the
twisted circle snaps into a plectoneme. An interesting fac
that this behavior isindependentof the length of the mol-
ecule. That this ought to be so follows from the absence
an absolute length scale in the problem of the deformed lo

Greater insight into the behavior of the deforming loop
gained if one also investigates the way in which the ene
depends on the various properties of the loop. The ene
can be expressed in terms of the previously introduced qu
tities. A straightforward calculation yields for the energy
the loop

E5FH ~a1b1c!1
1

4
~p11p2!2FA

C
21G J E ds. ~4.4!

Where the final integral is over arc length. Expressing
circumference of the loop in terms ofF, a, b, and c, we
obtain the following result for the energy in terms of the to
circumference of the loopl, the bending modulusA, and the
parmetersa, b, andc:

E5
2A

l H ~a1b1c!1
1

4
~p11p2!2FA

C
21G J

3S E
c

b du

A~a2u!~b2u!~u2c!
D 2

. ~4.5!

The energy of the loops as a function of writhe for vario
values of the modulus ratioA/C is plotted in Fig. 4. A few
facts about the energies of the deformed configuration ca
established numerically~and we do not doubt that analyti
demonstrations can also be constructed!. First, the energy is
a monotonically increasing function of linking number, if n
of writhe. This is not immediately evident in Fig. 4, althoug
it is indicated, in that the energy increases or decrea
monotonically with writhe when the link does so. Furthe
more, when there is a maximum in link as a function

FIG. 4. The energy as a function of writhe for the cases plot
in Fig. 3. The energy is expressed in units of the combination 2A/ l ,
where l is the circumference of the writhing loop, andA is the
bending modulus. Also shown in this plot is the limiting value
the energy, at the figure eight configuration, which is displayed a
horizontal line. The ratioA/C controls the behavior of the energy
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7244 PRE 60BORIS FAIN AND JOSEPH RUDNICK
writhe, there is also an energy maximum, and, as indicate
Figs. 3 and 4, the maxima occur at the same value of
writhe.

In addition, when there is a maximum in the linking num
ber as the writhe increases from zero to one, so that there
two possible writhes associated with the same linking nu
ber in for a range of the latter quantity, the configurati
with the lower writhe always has the lower energy. This c
be established by a separate set of calculations. This imp
that when, for instance, 0.5,A/C,1, the loop, in distorting
from its planar form, will not be susceptible to a discontin
ous distortion to a more highly writhed, but not interwoun
configuration before it ‘‘snaps’’ to a plectoneme. In the a
sence of thermal fluctuations or external perturbations,
transition will to occur when the link has reached its ma
mum value as a function of writhe.

For a more detailed discussion of the energetics of
deforming loop, along with a calcuation of the energy of t
plectoneme, the reader is referred to Ref.@20#.

V. STABILITY OF THE DEFORMED LOOP

Given the existence of the solutions for the deformed lo
corresponding to the evolution of the supercoiling instabili
it is desirable to determine whether these solutions are, th
selves, stable against small fluctuations. There is noa priori
guarantee that this is so. We will find, in fact, that the s
bility of the closed configuration is enforced by the relative
large number of constraints that must be satisfied by fluc
tions about the extremizing solutions to the Euler-Lagran
equations. A number of technical details associated with
determination of the stability of a configuration are to
found in various Appendixes.

A. Stability in the absence of constraints:
The translation mode

The energy of a fluctuation about a solution to the Eul
Lagrange equation is expressible in terms of solutions to
linear second order differential equation~A9!, equivalent to
the Schro¨dinger equation of a particle in the potential E
~A10!. In particular, any fluctuationz(s) of the Euler angle
u(s) about the form it takes in an extremizing solution c
be written in the form

z~s!5(
l

KlC l~s!, ~5.1!

whereC l(s) is a solution to Eq.~A9!, with eigenvaluel l .
Assuming that theC l ’s are normalized, the energy of th
fluctuation is given by

(
l

Kl
2l l . ~5.2!

The extremizing solution will be stable as long as there
no solutions to Eq.~A9! with negative eigenvalues. Now
consider the potentialV(s), displayed in Fig. 5, associate
with one particular member of the family of solutions th
we have been considering.

A striking property of this potential is that it is alway
negative. From this one can infer that there are solution
in
e

re
-

n
es

-
,
-
at
-

e

p
,
m-

-

a-
e
e

-
e

e

of

the Schro¨dinger-like equation with negative eigenvalues.
fact, the existence of such states is guaranteed by the e
tence of the translational mode—the ‘‘fluctuation’’ equal
the derivative with respect to arc length of the extremizi
u(s). As the system is invariant with respect to translatio
along the closed loop, the infinitesimal transformation of t
extremizing solution ucl(s)→ucl(s1ds)5ucl(s)
1dsducl(s)/ds has no effect on the energy of the config
ration. The functionF t(s)}ducl(s)/ds has the requisite pe
riodicity, in that it is unchanged ifs goes tos6nL. This
implies the existence of a solution to the Schro¨dinger equa-
tion with zero eigenvalue. This solution is displayed in F
6. In both Figs. 5 and 6, the arc-length parameter ran
from 2L/2 to L/2. This will prove to be useful later on
when we take advantage of the reflection invariance of
potentialV(s).

The important thing to note is that the translational mo
has nodes. Note, furthermore, that this mode is odd on
flection abouts50. On the basis of a simple node-countin
argument, one can readily establish that there will be ano
antisymmetric solution to Eq.~A9!, having fewer nodes in
the interval2L/2,s,L/2, and, hence, a lower eigenvalu
than the translational mode. This lower eigenvalue is nec
sarily negative. As it turns out, there are two symmetric
lutions to Eq.~A9! having the requisite periodicity and neg
tive l ’s. The extremizing solution is, thus, nominall
unstable with respect tothreekinds of fluctuations.

B. Effects of constraints

Certain constraints apply to any fluctuation in a clos
loop. In fact, there are five such constraints, listed in App
dix A. These constraints must be incorporated into any c

FIG. 5. Typical potential, as given by Eq.~A10!, in the
Schrödinger-like equation, Eq.~A9!, obeyed by fluctuations abou
the deformed state. The quantityL is the total arc length of the loop

FIG. 6. The translational modeF t(s). The normalization of the
mode is such that its derivative is unity ats50. The quantityL is
the total arc length of the loop.
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PRE 60 7245CONFORMATIONS OF CLOSED DNA
culation of the stability of an extremizing solution. The ge
eral effect of such constraints on the stability calculation
outlined in Appendix C. The determination of the stability
a deformed loop amounts to a search for zeros of a dete
nant obtained by sandwiching a response kernel between
different functions, each associated with one of the five c
straints that must be satisfied by any small variation of
solution to the Euler-Lagrange equations for the extrem
loop configuration. The five functions are readily extract
from the integrals in Eqs.~A16!–~A22!. With the use of
symmetry arguments, one can verify that the five-by-five m
trix constructed out of the response kernel, which is exh
ited in Appendix D, reduces to a four-by-four matrix and
one-by-one matrix. The latter matrix consists of the expec
tion value of the response kernel with respect to the func
associated with closure in they direction. This function is
contained in the integral in Eq.~A20!.

The matrices are straightforwardly constructed, althou
the calculation is somewhat tedious. We find that all
configurations associated with the supercoiling instabi
that interpolate between the circle and the figure eight
mechanically stable. This is so because the determinant
not pass through zero for any negative value of the param
l. An example of the calculation of this determinant for
particular deformation of the circular loop is displayed
Figs. 7, 8, and 9.

VI. GENERALIZATIONS

A. Higher order deformations

The solution that interpolates between the supercoi
instability and the figure eight deformation bordering on t

FIG. 7. The determinant of the four-by-four matrix obtained
sandwiching the response kernel for the deformed loop betw
four of the five functions associated with the constraints on fluct
tions about a solution of the Euler-Lagrange equations for a clo
loop. Here the parametersa, b, and c are equal to 1.149 03
0.145 102, and20.154 898, respectively. The poles in the determ
nant are at the locations of the negativel ’s associated with uncon
strained fluctuations about the extremal solution.

FIG. 8. A more detailed version of Fig. 7, in which the regio
between the pole at the less negativel and the origin is displayed
to highlight the fact that the determinant does not go through z
whenl is negative.
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regime in which the loop interwinds does not represent
only possibility for deformation. One can also generate
formed loops associated with the evolution of higher ene
excitations of the circular loop. This is accomplished by
tering the requirement on the change in the Euler anglef
over a complete ‘‘period’’ of the oscillation of the variabl
u(s)5cosu(s), as it cycles between its limiting values ofb
andc. If, instead of asking thatf advance byp/2 in half a
period, one requires a change ofp/n, then it is possible to
generate a family of solutions to the Euler-Lagrange eq
tions associated with the excitations havingn periods around
the circumference of the circular loop. Figure 10 displa
such a distortion of the circular loop. Here,n55. The sta-
bility analysis of this family of solutions is straightforward
Starting with the translational mode, one counts nodes
determines the number of solutions to the eigenvalue eq
tion for fluctuations for whichl must be negative. There ar
simply too many to allow for stabilization by the action o
constraints. In the absence of external stabilizing mec
nisms, such as histones or their equivalent, a loop will sp
taneously distort out of this configuration.

B. Knotted configurations

It is possible to generate solutions to the Euler-Lagran
equations for the extremization of the elastic energy t

en
-
d

-

ro

FIG. 9. The determinant of the one-by-one matrix obtained
sandwiching the response kernel for the deformed loop between
function associated with the constraint of closure in they direction.
The parametersa, b, andc are equal to 1.149 03, 0.145 102, an
20.154 898, respectively. The pole in the determinant is at
location of the negativel associated with an unconstrained fluctu
tion about the extremal function.

FIG. 10. The deformation with fivefold symmetry. This repr
sents one of the most ‘‘developed’’ members of the family of fiv
fold deformed loops. The perspective is off-center to aid visuali
tion. The actual curve is fivefold symmetric. The ‘‘fins’’ on thi
curve trace out the embeddedx and y axes, and thus depict th
twisting of the rod.
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7246 PRE 60BORIS FAIN AND JOSEPH RUDNICK
close and that are, in addition, knotted. Again, one sim
alters the requirement on the way in which the Euler anglf
advances over the course of a ‘‘period’’ in the oscillation
the quantityu(s)5cosu(s) between its two limiting values
of b andc. Imposing the requirement that the change inf(s)
is equal tomp/n, wherem and n are relatively prime, and
m,n, one obtains knotted solutions. For example, sett
n53 andm52, one generates closed loops in the form
trefoils. An example of this solution to the Euler-Lagran
equations is displayed in Fig. 11. Alternatively, settingn
55 andm53, one obtains a knotted solution with fivefo
symmetry. This solution is shown in Fig. 12. Both display
loops are members of a family having the same topolog
characteristics. These closed extremal curves interpolate
tween nearly circular, ‘‘braided,’’ loops and relative
strongly writhing forms, such as those displayed in the fi
ures.

It is possible to assess the stability of the solutions sho
in the figure. In this case the constraints on fluctuations
not suffice to stabilize them against deformations that low

FIG. 11. A trefoil solution to the Euler-Lagrange equations. T
is a member of a family of solutions to the Euler-Lagrange eq
tions that knots in this particular way. It represents one of the m
strongly ‘‘writhed’’ members of this particular class of solution
The ‘‘fins’’ on this curve trace out the embeddedx andy axes, and
thus depict the twisting of the rod.

FIG. 12. A fivefold knotted solution to the Euler-Lagrang
equations. This is a member of a family of solutions to the Eu
Lagrange equations that knots in this particular way. It repres
one of the more strongly ‘‘writhed’’ members of this particul
class of solutions. The ‘‘fins’’ on this curve trace out the embedd
x andy axes, and thus depict the twisting of the rod.
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their elastic energy. Thus, in the absence of externally
posed stabilizing mechanisms, these extremal configurat
are not mechanically stable.

The trefoil solution has also been generated in finite e
ment calculations, and knotted configurations of closed D
have long been known to existin vivo @27#.

VII. ENTROPIC CORRECTIONS

The analysis of the fluctuations about the classical so
tion described above readily lends itself to a calculation
the entropic contributions to the partition function of a loo
of DNA at finite temperature. Performing an expansion
the Euler-angles about the form taken in a solution to
Euler Lagrange equation and retaining terms that are sec
order in the deviation of those angles about their class
values, one obtains the following expression for the partit
function of a closed DNA segment:

Z}e2bEel(u0 ,f0 ,c0)E Dg~s!exp@2b^g~s!uLug~s!&#,

~7.1!

where the operatorL is given by

L52
d2

ds2
1V~s!, ~7.2!

with V(s) as defined in Eq.~A10!. The quantityg(s) is the
deviation of the Euler angleu(s) from its classical value.

The integral overg(s) in Eq. ~7.1! yields the inverse
square root of the Fredholm determinant,F(0), of theopera-
tor L, where

F~l!5)
l

~l l2l!. ~7.3!

The quantitiesl l are the eigenvalues of the operatorL. The
Fredholm determinant is readily calculated with the use o
method commonly exploited in the study of instanton effe
in nonlinear systems@28#. The application of this method to
the case at hand is outlined in Appendix E. One finds that
determinant can be expressed in terms of the quantityT(l),
defined in Eq.~E6!. This quantity is plotted for a characte
istic member of a family of deformed loops that interpola
between a circle and a figure eight in Figs. 13 and 14
noteworthy property of the Fredholm determinant as d
played in the plots is the fact that this function ofl possesses
a zero atl50—this as a consequence of the existence of
translation mode—and the fact that there are zeros at n
tive values ofl. These latter features point to the instabili
of the unconstrained solution to the Euler-Lagrange eq
tions.

Given that T(0), and, by extension,F(0), is equal to
zero, one expects the Gaussian integration over the vari
g(s) to blow up. However, the translational mode has a we
defined influence on the fluctuation spectrum. It simply giv
rise to a multiplicative factor reflecting the freedom one h
in the fixing location the distortion on the loop. One elim
nates this zero from the Fredholm determinant by noting t
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d

dl)
l

~l l2l!U
l2l l 0

52 )
lÞ l 0

~l l2l l 0
!. ~7.4!

This means that we can eliminate the translational m
from the Fredholm determinant by making the replaceme

T~0!→2
dT~l!

dl U
l50

[2T8~0!. ~7.5!

The result of an unconstrained Gaussian integration o
fluctuations is, then, proportional to

b2N/2@2T8~0!#21/2, ~7.6!

whereN is equal to the number of modes contributing to t
fluctuation spectrum. In light of the behavior ofT(l), as
displayed in Figs. 13 and 14, this result is clearly patholo
cal.

Constraints

Of course, one is not allowed to integrate freely over
fluctuations. The constraints on the influence of those fl
tuations are the same as applied in the linear stability an
sis. The imposition of constraints leads to an additional m
tiplicative term

@det„G~l50!…#21/2 ~7.7!

FIG. 13. The functionT(l), as defined by Eq.~E6! for a char-
acteristic supercoiling solution to the Euler-Lagrange equations
a closed loop. Note the zeros of this function at negative value
l. The function also passes throught zero atl50 as the result of
the existence of the translational mode.

FIG. 14. A more detailed plot ofT(l) in the vicinity of l50.
This function passes through zero with a positive slope, and th
is, in addition, a zero at small, positive,l.
e
t

er
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ll
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For the general principle underlying this result, see Appen
F. The matrixG is a 535 version of the matrix introduced in
Appendix C. The determinant of this matrix has poles at
negative values ofl at which the functionT(l) passes
through zero. Figures 7, 8 and 9 display the dependencel
of the two quantities that when multiplied together yield th
determinant. The plots in these figures are for the same
lution to the Euler-Lagrange equation as generated theT(l)
displayed in Figs. 13 and 14. The quantity

b2N/2@2T8~0!det„G~l50!…#21/2 ~7.8!

represents the contributions of fluctuations about the cla
cal solution, to within readily calcuated numerical factors.
the example for which quantities are displayed, the argum
of the square root is finite and positive.

VIII. CONCLUSION

We have presented a formalism for obtaining the ela
mimima of a segment of closed DNA subject to a constra
in the linking number. The methods exploited here have b
utilized to construct the family of deformations interpolatin
between the ‘‘relaxed’’ circular form taken by such a se
ment when the molecule is insufficiently under- or ove
wound to induce a supercoiling transition and the figure ei
form that represents the threshold of interwinding. The me
bers of this family are stable with respect to small fluctu
tions. The same methods also give rise to solutions that
resent the evolution of ‘‘higher order’’ fluctuations about
circle of the twisted loop. These solutions to the Eule
Lagrange equations for the extremization of the elastic
ergy of a closed loop are unstable with respect to small fl
tuations, in that there exist one or more fluctuation mod
that lead to a lowering of the energy with respect to t
classical solution. It is also possible to construct knotted
lutions to the Euler-Lagrange equations. These configu
tions also represent saddlepoint solutions to the extrem
tion equation. However, as previously noted, it is possible
envision stabilizing mechanisms consistent with the kno
structure of biological systems.

In this paper, entire closed loops were generated and s
ied. The same method can, in principle, also be utilized
construct a truly ‘‘finite’’ finite-element analysis in which
elastic models can be traced out with the use of noninfi
tesimal segments. Given our experience in the project
scribed herein, we are confident that the properties of
segments can be controlled and explicitly displayed. T
ought to give rise to a substantial savings in time and ef
in numerical studies of DNA structure.
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APPENDIX A: STABILITY CONSIDERATIONS

Starting with the expression for the elastic energy

Eel5E dsEel~s!, ~A1!
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where

Eel~s!5
A

2 F S du~s!

ds D 2

1sin2u~s!S df~s!

ds D 2G
1

C

2 Fdc~s!

ds
1cosu~s!

df~s!

ds G2

. ~A2!

See Eq.~2.1!. We expand the Euler angles about their e
tremizing values as follows:

f~s!5fcl~s!1a~s!, ~A3!
n

h
i

ta
in
-

c~s!5ccl~s!1b~s!, ~A4!

u~s!5ucl~s!1g~s!. ~A5!

The subscriptcl stands for the extremizing, or ‘‘classical’
values of the Euler angles. The deviations from these cla
cal values,a(s), b(s), andg(s), are assumed to be sma
Substituting from Eqs.~A3!–~A5! into Eq.~A2!, one finds at
quadratic order in the deviations from the extremizing so
tions a local energy equal to
angles.

‘‘fluc-

en the

in a
es of the
A

2
$ġ~s!21ḟcl~s!2g~s!2@cos2ucl~s!2sin2ucl~s!#14ȧ~s!g~s!ḟcl sinucl~s!cosucl~s!1ȧ2 sin2ucl~s!%1

C

2
$@ḃ~s!

1ȧ~s!cosucl~s!2ḟcl~s!g~s!sinucl~s!#222@ċcl~s!1ḟcl~s!#@ȧ~s!g~s!sinucl~s!1ḟ~s!g2~s!cosucl~s!/2#%. ~A6!

When it does not lead to confusion, the, the subscripts will be dropped from the ‘‘classical,’’ or extremum, Euler
Because the classical Euler angles satisfy an extremum equation, there is no term linear in the deviations.

A cursory investigation of Eq.~A6! reveals that the second-order energy depends ona(s) and b(s) only through their
derivatives. Minimizing the energy with respect to these variables, we are left with the following dependence of the
tuation’’ energy on the angular variableg(s):

A

2 S dg~s!

ds D 2

2
g~s!2

2

~Jf
2 1Jc

2 !@2 cos2u~s!11#2JfJc cosu~cos2u15!

A sin4u
. ~A7!

Recall that the Euler angleu(s) in Eq. ~A7! is the solution to the minimzation equation.
The equation~A7! for the energy of a fluctuation can be further reduced if one makes use of the relationship betwe

quantitiesJf andJc and the rootsa, b, andc of the cubic polynomial in Eq.~3.17!. The new form of the energy is

1

2 S dg~s!

ds D 2

2
1

4

@22u~s!#@12u~s!#2~a11!~b11!~c11!1@21u~s!#@11u~s!#2~a21!~12b!~12c!

@12u~s!2#
2g~s!2. ~A8!

The quantityu(s) satisfies Eq.~3.10!. This equation is equivalent to the expectation value of the energy of a particle
one-dimensional potential. This expectation value can be expressed in terms of the eigensolutions and eigenvalu
corresponding Schro¨dinger equation. The stationary version of the Schro¨dinger equation has the form

2
d2C~s!

ds2
1V~s!C~s!5lC~s!, ~A9!

where

V~s!5
1

2

@22u~s!#@12u~s!#2~a11!~b11!~c11!1@21u~s!#@11u~s!#2~a21!~12b!~12c!

@12u~s!2#2
. ~A10!
The stability of a fluctuation is tied to the sign of the eige
values of the stationary Schro¨dinger equation. If all the al-
lowed values ofl are positive, the solution about whic
fluctuations occur is positive. On the other hand, if there
one or more negativel, then an instability exists.

Constraints

Fluctuations about the classical solution must obey cer
constraints. In particular, they cannot change the follow
properties of the loop.
-

s

in
g

~A! The loop closes smoothly:

E
0

Ldf~s!

ds
ds52pn, ~A11!

wheren is an integer.
~B! The net linking number is fixed:

E
0

Ldc~s!

ds
ds5const. ~A12!
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~C! The loop closes in thex direction:

E
0

L

sinu~s!cosf~s!ds50. ~A13!

~D! The loop closes in they direction:

E
0

L

sinu~s!sinf~s!ds50. ~A14!

~E! The loop closes in thez direction:

E
0

L

cosu~s!ds50. ~A15!

In the above expressions, the Euler angles are not necess
equal to their extremum values.

Expanding the solution about its extremum form and
pressing the fluctuations in the Euler anglesf andc in terms
of the fluctuationg(s), in the Euler angleu(s), the condi-
tions above take the forms shown below.

~A! Smooth closure:

A F

2AE0

Lp1@u~s!21#21p2@u~s!11#2

@12u~s!#3/2
g~s!ds50.

~A16!

Here, and below, the quantityu(s) is cosu(s), whereu(s) is
the solution to the extremum equations.

~B! Constancy of the link:

A F

2AE0

Lp1@12u~s!#22p2@11u~s!#2

@12u~s!2#3/2
g~s!ds50.

~A17!

~C! Closure in thex direction:

E
0

LH u~s!cosfcl~s!

1A F

2A

p1@12u~s!#21p2@11u~s!#2

@12u~s!2#3/2
Ix~s!J g~s!ds

50. ~A18!

Here, the quantityIx(s) is given by

Ix~s!5E
L/2

s
A12u~s8!2sinfcl~s8!ds8. ~A19!

~D! Closure in they direction:

E
0

LH u~s!sinfcl~s!

2A F

2A

p1„12u~s!…21p2„11u~s!…2

„12u~s!2
…

3/2
Iy~s!J g~s!ds

50, ~A20!

where
rily

-

Iy~s!5E
L/2

s
A12u~s8!2cosfcl~s8!ds8. ~A21!

~E! Closure in thez direction:

E
0

L
A12u~s!2g~s!ds50. ~A22!

APPENDIX B: STABILITY ANALYSIS
OF THE CIRCULAR LOOP

The solution of the extremum equations leading to a c
cular loop is

u~s!50, ~B1!

fcl~s!5
2ps

L
, ~B2!

ccl~s!5Lk
2ps

L
, ~B3!

the quantity Lk being the linking number of the circular loo
Making use of Eq.~A7!, we find for the eigenvalue equatio
for fluctuations

A

2 H 2
d2g~s!

ds2
2F S dfcl~s!

ds D 2

2S C

AD 2S dccl~s!

ds D 2Gg~s!J
5lg~s! ~B4!

substituting for the rate of change of the classical Eu
angles,fcl(s) andfcl(s), the eigenvalue equation becom

A

2 H 2
d2g~s!

ds2
2S 2p

L D 2F11S C

AD 2

Lk2G J g~s!5lg~s!.

~B5!

Now, the solutions to the equation above are

g~s!} cosS 2pn

L
s1d D , ~B6!

wheren is an integer andd is an arbitrary phase angle. Look
ing at Eq.~B5!, one might be tempted to conclude that t
circular loop is always unstable, in that solutions of the fo
of Eq. ~B6! with n50 andn51 give rise to negative eigen
values. However, those solutions are inconsistent with
constraints on fluctuations. A cursory inspection of the co
straints listed in Eqs.~A16! to ~3.12! reveals that the follow-
ing conditions must hold in the case of the circular loop:

E
0

L

g~s!ds50, ~B7!

E
0

L

g~s!cosS 2ps

L Dds50, ~B8!

E
0

L

g~s!sinS 2ps

L Dds50. ~B9!
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7250 PRE 60BORIS FAIN AND JOSEPH RUDNICK
These three constraints explicitly rule out fluctuations of
form of Eq. ~B6! with n50 or n51. All other values ofn
are allowed. If we substitute a fluctuation given by Eq.~B6!
with n>2, the equation for the eigenvaluel is

l5
A

2 S 2p

L D 2Fn2212S C

AD 2

Lk2G . ~B10!

The lowest value ofl is associated with the smallest allowe
value ofn2, corresponding ton52. Replacingn by 2 in Eq.
~B10!, we find

l5
A

2 S 2p

L D 2F32S C

AD 2

Lk2G . ~B11!

According to Eq.~B11!, l will be negative, corresponding t
an instability in the circular configuration, when L
.A3(A/C).

APPENDIX C: GENERAL EFFECT OF CONSTRAINTS
ON A STABILITY CALCULATION

The question of the stability of a solution to the Eule
Lagrange equations is posed in terms of the eigenvalue s
trum of a linear operator. This, in turn, can be recast in ter
of the problem of finding extremal values for the expectat
value

^juLuj&, ~C1!

whereL is the linear operator. The constraints are equival
to requiring that thej between which the operator is san
wiched is orthogonal to a set ofmx ’s. There is also the
constraint on the absolute magnitude ofj. The constraints
are, then of the form

^juj&51, ~C2!

^jux l&50. ~C3!

In Eq. ~C3!, the indexl runs from 1 tom. The equation for
the extremum of the quadratic form~C1!, subject to the con-
straints~C2! and ~C3!, takes the form

Luj&5luj&1(
l 51

m

L l ux l&. ~C4!

The coefficientsl and L l are Lagrange multipliers, which
enforce the constraints to which the system is subject.
solution to the above equation is

uj&5(
l 51

m
L l

L2l
ux l&. ~C5!

The Lagrange multipliersL l must now be adjusted to ensu
the orthogonality requirements. These requirements ar
the form

05(
l 51

m

L l K xkU 1

L2l Ux l L
[GklL l . ~C6!
e

ec-
s

n

t

e

of

This set ofm equations for the Lagrange multipliersL l has
nontrivial solutions only if the determinant of them3m ma-
trix G is zero. The equationuGjku50 represents a condition
on the parameterl.

Now, given a solution to Eq.~C6!, we take the expecta
tion value ^jLj&. Substituting from the right hand side o
Eq. ~C6!, we find for this expectation value

(
l 51

m K jUL L l

L2l Ux l L 5(
l 51

m K jU~L2l!
L l

L2l Ux l L
1l(

l 51

m K jU L l

L2l
x lU L

5(
l 51

m

L l^jux l&1l^juj&

5l. ~C7!

In Eq. ~C7! we have made use of the orthogonality ofj to
thex l ’s. We are also assuming that the functionj is normal-
ized. Thus, in solving for the value ofl that satisfies Eq.
~C6! we are also determining the effective values of the
genvalues of the constrained problem.

APPENDIX D: THE RESPONSE KERNEL

The quantity 1/(L2l) represents the response kernel
the interval2L/2<s<L/2. This kernel, which can be writ
ten in the formK(s,s8), is the inverse of the operator
2d2/ds21V(s) on that interval, and it has the addition
property that it maps onto periodic functions. This respon
is constructed out of two solutions to the differential equ
tion

2
d2F~s!

ds2
1V~s!F~s!5lF~s!. ~D1!

The first solution,F1(s) is even under reflection about th
origin. It has the property

F1~0!51 ~D2!

dF1~s!

ds U
s50

50. ~D3!

The second solution,F2(s), is odd with respect under reflec
tion about the origin. It satisfies the following conditions:

F2~0!50, ~D4!

dF2~s!

ds U
s50

51. ~D5!

That the response kernel below satisfies all the requ
ments above can be established by explicit calculation:
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K~s,s8!5F1~s.!F2~s,!2
1

2
@F1~s!F2~s8!

1F2~s!F1~s8!#1
Ḟ2~L/2!

2Ḟ1~L/2!
F1~s!F1~s8!

1
F1~L/2!

F2~L/2!
F2~s!F2~s8!. ~D6!

In Eq. ~D6!, the arguments.(,) is the greater~lesser! of
s,s8, and the dots refer to differentiation with respect to a
lengths.

APPENDIX E: THE CONSTRUCTION
OF THE FREDHOLM DETERMINANT

The Fredholm determinant of the operatorL2l, where

L52
d2

ds2
1V~s! ~E1!

is of the form

)
l

~l l2l!, ~E2!

where thel l ’s are the eigenvalues of the operatorL. In the
case of interest the eigenfunctions of this operator are p
odic, in that ifLC l5l lC l , thenC l(s1L)5C l(s).

The Fredholm determinant is defined in terms of its a
lytic properties in the complexl plane. It is obvious that this
function of the variablel has no poles at finite values ofl,
and that all zeros are on the real axis, at the locations of
eigenvalues of the operatorL. There is another function ofl
having this property, formed from the solutionsF1(s) and
F2(s), defined in Appendix D. To construct this function w
note that any solution of the equationLC5lC can be rep-
resented in terms of the two linearly independent functio
F1 andF2 as follows:

C~s!5C~0!F1~s!1
dC~s!

ds U
s50

F2~s!. ~E3!

This means that we can express the functionC(s) and its
derivative, Ċ(s) at s5L in terms of the function and its
derivative ats50 in the following form:

S C~L !

Ċ~L !
D 5S F1~L ! F2~L !

Ḟ1~L ! Ḟ2~L !
D S C~0!

Ċ~0!
D . ~E4!

Given the fact that the Wronskian ofF1 andF2 is equal to
1, the matrix on the right hand side of Eq.~E4! has a deter-
minant of 1. Now, if the functionC(s) is periodic ins, then
the right hand side of Eq.~E4! is equal to the left hand side
This leads immediately to the characteristic equation for
matrix

05UF1~L !21 F2~L !

Ḟ1~L ! Ḟ2~L !21
U

c

ri-

-

e

s

e

522F1~L !2
dF2~s!

ds U
s5L

. ~E5!

This means that the function ofl

T~l!5221F1~L !1
dF2~s!

ds U
s5L

~E6!

is equal to zero at the eigenvalues of the operatorL5
2d2/ds21V(s). Furthermore, it can be established that th
function is free of singularities and zeros at any other fin
value ofl.

The functionT(l) is not identically equal to the Fred
holm determinant of the operatorL2l, in that the behavior
at ulu5` of the two quantities is not the same. However,
we defineT0(l) as the function corresponding toT(l) when
the potentialV(s) has been set equal to zero, and if w
denote byF(l) andF0(l) the corresponding Fredholm de
terminants, then the following relationship can be esablish

F~l!

F0~l!
5

T~l!

T0~l!
. ~E7!

Given that the Fredholm determinant of the operatorL02l
52d2/ds22l is readily calculated, Eq.~E7! leads to a di-
rect determination of the desired quantity. Figures 13 and
display a characteristicT(l) for one of the writhing solu-
tions that interpolate between a circle and a figure eig
Figure 14 shows in detail the behavior of the Fredholm
terminant in the vicinity ofl50. Note that this function
passes through zero atl50, and that there is a zero of thi
function at a small, positive value ofl.

APPENDIX F: THE EFFECT OF CONSTRAINTS
ON A GAUSSIAN INTEGRAL

Given the quadratic form

(
i , j 51

n

xiAi j xj[xW•A•xW ~F1!

the Gaussian integral

E )
i 51

n

dxi expS 2 (
i , j 51

n

xiAi j xj D ~F2!

subject tom the constraints

xW•yl50, 1< l<m, ~F3!

is equal to

S 1

2p D mE )
l 51

m

dv lF E )
i 5 i

n

dxi expS 2xW•A•xW

1(
l 51

m

iv l yW l•xW D G . ~F4!

Performing the integral overxW , we are left with the following
integral over thev l ’s:
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@det~A/p!#21/2S 1

2p D m

3E )
j 51

m

expS 2 (
k,l 51

m

vkyW k•A21
•yW lv l /4D

[@det~A/p!#21/2S 1

2p D mE )
j 51

m

n

te
3expS 2 (
k,l 51

m

vkBklv l /4D . ~F5!

The Gaussian integration over thev l ’s leads to the final re-
sult

@det~A/p!det~B/4p!#21/2S 1

2p D n

. ~F6!
ys.
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